Evidence of CO_2 molecule acting as an electron acceptor on a nanoporous metal–organic-framework MIL-53 or $Cr^{3+}(OH)(O_2C-C_6H_4-CO_2)^{\dagger}$

Alexandre Vimont,*^{*a*} Arnaud Travert,^{*a*} Philippe Bazin,^{*a*} Jean-Claude Lavalley,^{*a*} Marco Daturi,^{*a*} Christian Serre,^{*b*} Gérard Férey,^{*b*} Sandrine Bourrelly^{*c*} and Philip L. Llewellyn^{*c*}

Received (in Cambridge, UK) 7th March 2007, Accepted 10th May 2007 First published as an Advance Article on the web 8th June 2007 DOI: 10.1039/b703468g

The adsorption mode of CO₂ at low coverage in the nanoporous metal benzenedicarboxylate MIL-53(Cr) or $Cr^{3+}(OH)(O_2C-C_6H_4-CO_2)$ has been identified using IR spectroscopy; the red shift of the v_3 band and the splitting of the v_2 mode of CO₂ in addition to the shifts of the v(OH) and $\delta(OH)$ bands of the MIL-53(Cr) hydroxyl groups provide evidence that CO₂ interacts with the oxygen atoms of framework OH groups as an electron-acceptor *via* its carbon atom; this is the first example of such an interaction between CO₂ and bridged OH groups in a solid.

Carbon dioxide is a strategic gas in many industrial processes. As both a product of combustion and a significant greenhouse gas, its recovery and elimination/reuse is a major problem facing today's society.¹ One solution to recover carbon dioxide is to employ an adsorption process. Among the potential adsorbent nanoporous candidates (i.e. activated carbons, zeolites, clays, silicas...), metal organic frameworks (MOF) could be a serious alternative. These "metal organic frameworks"^{2,3} or "metal coordination polymers"⁴ are built up from inorganic sub-networks (clusters, chains or layers) and organic complexing molecules (phosphonates, carboxylates, sulfonates). These sub-networks often contain divalent (Zn²⁺, Cu²⁺...) or trivalent cations (Cr³⁺, Al³⁺...) connected to each other via organic moieties such as carboxylates. The structures present tunnels or cavities with pore sizes between 3 and 35 Å. This could lead to highly porous solids with record surface areas and pore volumes.^{5,6}

Several studies have examined the adsorption of carbon dioxide by MOF materials. Very large capacities at room temperature have been reached at pressures between 10 and 70 bar.^{7,8}

The structure of MIL-53_{HT}(Cr) (HT: high temperature form) or Cr(OH)(O₂C–C₆H₄–CO₂) is built up from infinite chains of cornersharing CrO₄(OH)₂ octahedra interconnected by the dicarboxylate groups.⁹ This results in a 3D metal–organic framework containing

1D diamond-shaped channels with pores of free diameter close to 0.85 nm (Fig. 1) and an average surface area (Langmuir) of about 1500 m² g⁻¹. It was shown previously that MIL-53 is a highly breathing solid which contracts or expands reversibly upon adsorption–desorption of water or polar solvents such as dimethylformamide. It was also observed that adsorption of gaseous CO_2 in the latter solid at 304 K resulted both in a high capacity (*ca.* 10 mmol g⁻¹) and an unusual adsorption isotherm with the presence of a step at around 6 bar. It was assumed that this phenomenon could be due to specific interactions between the gas and the framework which would cause a shrinkage of the structure for low uptake values (<6 bar); at higher pressure, a reopening of the total porosity and total pore filling of the pores would occur.⁷

This communication is related to CO_2 adsorption in MIL-53(Cr) at low coverage. We report evidence that CO_2 is adsorbed molecularly in MIL-53(Cr) as an electron acceptor. To our knowledge, this is the first evidence of such an interaction within a MOF or any other porous material having large CO_2 sorption capacity.

The spectrum of MIL-53(Cr) after outgassing at 473 K is shown in Fig. 2(a, c). It exhibits strong bands between 800 and 1700 cm⁻¹ assigned to the vibration modes of the organic moieties. In particular, those at 1550 and 1400 cm⁻¹ characterize the v(COO) vibrations of carboxylate groups. The hydroxyl groups of the *trans* corner sharing octahedra CrO₄(OH)₂ chains give rise to a v(OH) band at 3655 cm⁻¹ with a shoulder near 3610 cm⁻¹. H/D exchange experiments with D₂O at room temperature followed by evacuation at 373 K show that the corresponding δ (OH) band is situated at 920 cm⁻¹.

Fig. 1 Left: view of the structure of MIL-53_{HT}(Cr) along the pore axis; right: view of the chains of MIL-53(Cr) (Cr: white, O: grey, C: black).

^aLaboratoire Catalyse et Spectrochimie, UMR 6506, CNRS-ENSICAEN-Université de CAEN, 6, Bd du Maréchal Juin, F-14050, Caen Cedex, France. E-mail: alexandre.vimont@ensicaen.fr; Fax: +33-231452822; Tel: +33-231451347

^bInstitut Lavoisier, UMR CNRS 8180, Université de Versailles Saint-Quentin-en-Yvelines, 45 avenue des Etats-Unis, 78035, Versailles cedex, France. Fax: 33 1 39 25 43 58; Tel: 33 1 39 25 43 05

^cMADIREL, Universite de Provence - CNRS UMR 6121, Centre de St Jérôme, 13397, Marseille Cedex 20. Fax: 33 4 91 63 71 11; Tel: 33 4 91 63 71 12

[†] Electronic supplementary information (ESI) available: Experimental: synthesis and IR measurements. See DOI: 10.1039/b703468g

Fig. 2 IR spectra of MIL-53(Cr) activated at 473 K under vacuum (10^{-3} Pa) before and after introduction of 133 Pa of CO at 100 K (spectra (a, b)), before and after introduction of 3300 Pa of CD₃CN at 298 K (spectra (c, d)). Spectra (a, b): self-supported wafer (15 mg); spectra (c, d): sample (2 mg) previously dispersed in deionised water and spread on a silicon plate.

In a first step, the acidic properties of MIL-53(Cr) activated at 473 K have been probed using CO adsorption at 100 K and CD₃CN adsorption at 298 K. The spectrum in the v(CO) range after introduction of 133 Pa of CO into the cell (Fig. 2(b)) displays a strong band at 2136 cm⁻¹ with a shoulder at about 2145 cm⁻¹. Such low-frequency bands characterize liquid-like species. The lack of any band above 2150 cm⁻¹ indicates the absence of coordinatively unsaturated Cr^{3+} sites which would lead to bands in the 2180–2200 cm⁻¹ range.¹⁰ Besides, no CO interaction with the hydroxyl groups could be evidenced: neither perturbation of the v(OH) band, nor the appearance of H-bonded CO (2150- 2170 cm^{-1} range) is observed. This indicates that acidity of OH groups is very weak in MIL-53(Cr). CD₃CN adsorption at 298 K leads to a perturbation of the OH groups by hydrogen bonding, giving rise to a v(CN) band at 2260 cm⁻¹ and a downward shift of the v(OH) band by about 180 cm⁻¹ (Fig. 2(d)). These frequencies are close to those reported for acetonitrile H-bonded with weakly acidic alcohols such as methanol.¹¹ Thus, both CO and CD₃CN adsorptions show that OH groups of MIL-53(Cr) do not present a pronounced acid character.

CO₂ introduction (equilibrium pressure from 133 to 3×10^5 Pa) on MIL-53(Cr) activated at 473 K has been performed at room temperature. The spectra recorded after introduction of CO₂ (0–5850 Pa) are shown in Fig. 3. In the 2350–2300 cm⁻¹ range, a strong band at 2335 cm⁻¹ with a shoulder at 2325 cm⁻¹ are detected. They are assigned to the CO₂ asymmetric stretching mode (v_3) and to the $v_3 + v_2 - v_2$ combination mode (hot band), respectively. The v_3 band frequency is clearly lower than that observed in the gas phase (2349 cm⁻¹). Thus, this rules out the

Fig. 3 CO₂ introduction on MIL-53(Cr) activated at 473 K. Spectra of activated MIL-53(Cr) deposited on silicon wafer (dotted lines) and then after introduction of increasing CO₂ equilibrium pressures into the cell (full lines): (a) 1066 Pa, (b) 2400 Pa, (c) 3850 Pa, (d) 5000 Pa, (e) 5850 Pa. Inset: perturbation of the δ (OH) mode upon CO₂ adsorption. * indicates a residual contribution of the v_2 band of CO₂ gas in the spectra.

interaction of CO₂ in MIL-53 as an electron-donor molecule through one of its oxygen atoms since it implies usually an upward shift of the v_3 frequency with respect to that of the gas phase.¹² This is in agreement with the very weak acidity of OH groups of MIL-53(Cr), too low to form H-bonds with CO₂ molecules.

In the v_2 range (CO₂ bending mode), two bands at 662 and 650 cm⁻¹ are observed. Their intensity increases at the same rate with the CO₂ pressure, strongly suggesting that both bands correspond to only one type of adsorbed species. Accordingly, only one v_3 band is detected (2335 cm⁻¹). It is worthwhile mentioning that similar spectra are obtained at higher pressure (1.5–3 bar), which are relevant to practical applications. However, the contribution of the gaseous CO₂ spectrum is then important, preventing the v_3 and v(OH) domains to be investigated (see ESI†). In any case, no band due to the v_1 mode (expected near 1385 cm⁻¹) can be observed because of strong carboxylate bands in this spectral range.

The presence of a double band for the doubly degenerated v_2 stretching mode of gaseous CO₂, indicates a lowering of the symmetry upon adsorption, which lifts the degeneracy of the v_2 mode. Confinement effect due to the micropores of the material could be involved. However no v_2 splitting has been observed when CO₂ is adsorbed in micro- and mesoporous compounds such as silicalite,¹³ X-zeolite and mesoporous MCM-41 silica.¹⁴ By contrast, similar splittings have been reported previously in the case of electron donor–acceptor (EDA) complexes of CO₂ with molecules such as pyridine,¹⁵ alcohols¹⁶ or functional groups of polymers¹⁷ and was due to the interaction *via* the carbon atom of CO₂ as an electron acceptor. In this case, the high and low v_2 frequency bands are assigned to the out-of plane and in-plane bending modes, respectively.¹⁷ This leads to a v_3 frequency (2335 cm⁻¹) clearly lower than that observed in the gas phase

(2349 cm⁻¹), which is also expected in the case of EDA complexes involving CO₂ as an electron acceptor.¹⁸

In the case of MIL-53(Cr), two electron donors can be considered: terephthalate moieties and hydroxyl groups. It has been reported that CO₂ incorporation in poly(ethylene terephthalate) provokes the splitting of the v_2 band, with a doublet at 659 and 655 cm^{-1.17} This splitting is significantly smaller than that observed in the present study. Moreover significant perturbations of both v(OH) and δ (OH) bands arise: adsorption of increasing amounts of CO₂ leads to the appearance of two new bands at 3636 cm^{-1} and 950 cm^{-1} at the expense of those at 3655 and 920 cm⁻¹ (Fig. 3). The shift of the v(OH) band (19 cm⁻¹) is similar to that observed in the case of CO2-alcohol EDA complexes, whereas that of the corresponding $\delta(OH)$ band (30 cm⁻¹) is much more important than predicted by ab initio calculations for a CO₂-CH₃OH EDA complex (30 vs. 2-3 cm⁻¹).¹⁶ To explain such a shift, it is worthwhile noticing that the OH groups in MIL-53 are bridged. CO₂ interaction with the oxygen atom of μ_2 -OH groups might significantly change the conformation of the OH group with respect to the Cr-O-Cr plane, thus leading to a significant perturbation of the δ (OH) bending mode (Scheme 1). Preliminary periodic DFT calculations support this result.

Scheme 1 CO₂ interaction with MIL-53 OH group.

In conclusion, we have observed spectroscopic evidence for the formation of EDA complex between CO_2 and hydroxyl groups in the nanoporous hybrid solid MIL-53(Cr) material, a compound having high sorption CO_2 capacities. This is the first evidence of

such an interaction between CO_2 and bridged OH groups in a solid. Work is in progress to understand how such an interaction could provoke the shrinkage of the structure.

This work was supported by French ANR and EU funding *via* Research Project "NoMAC" and FP6-Specific Targeted Research Project "DeSANNS" (SES6-020133) respectively.

Notes and references

- 1 K. Caldeira, A. K. Jain and M. I. Hoffert, Science, 2003, 299, 2052–2054.
- 2 G. Ferey, C. Mellot-Draznieks, C. Serre and F. Millange, Acc. Chem. Res., 2005, 38, 217–225.
- 3 O. M. Yaghi, M. O'Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi and J. Kim, *Nature*, 2003, **423**, 705.
- 4 S. Kitagawa, S. Noro and T. Nakamura, Chem. Commun., 2006, 701–707.
- 5 H. K. Chae, D. Y. Siberio-Pérez, J. Kim, Y. B. Go, M. Eddaoudi, A. J. Matzger, M. O'Keeffe and O. M. Yaghi, *Nature*, 2004, 427, 523–527.
- 6 G. Ferey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surble and I. Margiolaki, *Science*, 2005, 309, 2040–2042.
- 7 S. Bourrelly, P. L. Llewellyn, C. Serre, F. Millange, T. Loiseau and G. Ferey, J. Am. Chem. Soc., 2005, 127, 13519–13521.
- 8 A. R. Millward and O. M. Yaghi, J. Am. Chem. Soc., 2005, 127, 17998–17999.
- 9 C. Serre, F. Millange, C. Thouvenot, M. Nogues, G. Marsolier, D. Louer and G. Ferey, J. Am. Chem. Soc., 2002, **124**, 13519–13526.
- 10 A. Vimont, J. M. Goupil, J. C. Lavalley, M. Daturi, S. Surble, C. Serre, F. Millange, G. Ferey and N. Audebrand, J. Am. Chem. Soc., 2006, 128, 3218–3227.
- 11 T. Kammer and W. A. P. Lucks, J. Chim. Phys., 1993, 90, 1643.
- 12 C. Morterra, G. Cerrato and C. Emanuel, *Mater. Chem. Phys.*, 1991, 29, 447–456.
- 13 B. Bonelli, B. Civalleri, B. Fubini, P. Ugliengo, C. O. Arean and E. Garrone, J. Phys. Chem. B, 2000, 104, 10978–10988.
- 14 A. Vimont, unpublished work.
- 15 J. C. Meredith, K. P. Johnston, J. M. Seminario, S. G. Kazarian and C. A. Eckert, *J. Phys. Chem.*, 1996, **100**, 10837–10848.
- 16 Y. Danten, T. Tassaing and M. Besnard, J. Phys. Chem. A, 2002, 106, 11831–11840.
- 17 S. G. Kazarian, M. F. Vincent, F. V. Bright, C. L. Liotta and C. A. Eckert, J. Am. Chem. Soc., 1996, 118, 1729–1736.
- 18 J. M. Weber and H. Schneider, J. Chem. Phys., 2004, 120, 10056-10061.